Using proprietary data in portfolio construction

David Jessop
Quantitative Analyst
Global Head of Quantitative Research
Tel: +44 20 7567 9882
david.jessop@ubs.com
Performance of European factor portfolios

- The chart shows the performance of European long / short factor portfolios from 1993. We can see the generally low performance of quant strategies since 2008.

Source: UBS Quants. Data to 3rd May 2012.
SECTION 1

The signals
What data & models do we have?

- UBS Analysts
 - Recommendations
 - Price targets
 - Alpha Preferences
- Trading data – implied volatilities
- Flows
- Growth surprise index
- Survey data
SECTION 1.A

The signals

UBS analyst data
From our analysts we have many sources of data. These include
- Recommendations
- Price targets
- “Alpha preferences” – most and least preferred stocks in their sector
- Other revision data

For sake of simplicity we’ll focus on the European Alpha Preferences data
European Alpha Preferences are our analyst best stock picks

- The chart shows a back test of the performance of our Alpha Preferences portfolio (here built as a market neutral portfolio with equal investments in the long and short side).

Source: UBS Quants. For illustrative purposes only
SECTION 1.B

The signals

Volatility Skew
Option Skew

- There are lots of definitions of skew used and discussed in the academic literature. We have chosen a simple definition of the difference between the 90% strike implied volatility and the 110% strike implied volatility.

- Data from the UBS option trading systems from March 2003 (proprietary UBS dataset)

- The data comes to us as a parameterised implied volatility surface. We convert this to implied volatilities at constant moneyness and maturities.

- The universe for the examples below is the largest 500 names in the Dow Jones Europe index

- Unless otherwise stated, we build our portfolios by dividing the universe into equal thirds and equal weighting the names in each third.

The two rebalancing methods are:

i) **Weekly** on Thursdays using close of Wednesday options data

ii) **Monthly** on the first week-day of the month using data from the close of the last week-day of the previous month
Performance

- The low skew portfolio has tended to strongly outperform the benchmark.

Relative performance of top/bottom third of stocks by skew, weekly rebalancing

<table>
<thead>
<tr>
<th></th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Annualised return</td>
<td>17.5%</td>
</tr>
<tr>
<td>Annualised SD</td>
<td>22.6%</td>
</tr>
<tr>
<td>Sharpe</td>
<td>0.70</td>
</tr>
<tr>
<td>Information Ratio</td>
<td>0.67</td>
</tr>
<tr>
<td>Hit rate</td>
<td>53%</td>
</tr>
</tbody>
</table>

Source: UBS quant, for illustrative purposes only.
Is this a new factor?

- Regressing on the Carhart factors, we find that the low skew portfolio has significant and positive returns in Europe.

| Estimate (BP per week) | Std. Error | t value | Pr(>|t|) |
|------------------------|------------|---------|----------|
| Intercept | 7.2 | 3.0 | 2.44 | 0.015 |
| Market | 0.975 | 0.011 | 85.47 | 0.000 |
| Book to price | -0.173 | 0.032 | -5.49 | 0.000 |
| Momentum | -0.079 | 0.022 | -3.55 | 0.000 |
| Size | 0.186 | 0.032 | 5.78 | 0.000 |

Weekly, European returns to the low skew basket

| Estimate (BP per month) | Std. Error | t value | Pr(>|t|) |
|-------------------------|------------|---------|----------|
| Intercept | 48.0 | 15.6 | 3.08 | 0.003 |
| Market | 0.925 | 0.032 | 29.34 | 0.000 |
| Book to price | -0.142 | 0.087 | -1.63 | 0.107 |
| Momentum | -0.066 | 0.057 | -1.16 | 0.249 |
| Size | 0.134 | 0.090 | 1.49 | 0.138 |

Monthly, European returns to the low skew basket

Source: UBS quant, for illustrative purposes only.
How are the returns distributed?

- Looking at the returns in each decile we see that the highest portfolio underperforms and has higher risk (much higher than average in Europe).

Europe, returns profile

Europe, risk profile

Source: UBS quant, for illustrative purposes only.
SECTION 1.C

The signals

Growth Surprise Index
Growth surprise index

- The UBS Economics team calculate a range of surprise indices. Here we are focused on the growth surprise index for the Eurozone.

- Our growth surprise indices are calculated using the data for economic outcomes and consensus forecasts from Bloomberg. When the outcome from a given economic data release, such as industrial production, housing starts, retail sales or GDP, exceeds the published consensus (by even the smallest of margins) our surprise index moves up by 1 point. When it falls short of the published Bloomberg consensus it moves down by 1 point. For indicators such as unemployment, the signs are reversed. No allowance is therefore made for the degree to which an outcome has deviated from the consensus forecast. And no allowance is made for subsequent revisions to economic data.

- To get to a Eurozone index, the aggregations is a GDP-weighted (PPP-adjusted) average of the country-specific indices that form the make-up of the region.
Relationship with the market

- The growth surprise index has had a reasonable relationship with the market (here the MSCI Europe).
But there seems to be some information

- A strategy of buying the market if the growth surprise index went up last week and shorting it if it fell seems to give us some information (a hit rate of 55%). If we trade a week later then the hit rate falls to 52%.

Source: UBS quant, for illustrative purposes only.
SECTION 2

Adding to our portfolio
Understanding our forecasts

- Before we embark on attempting to combine our new information into our basic quant portfolio, we need to consider what information is contained in the forecasts.

- Our approach of how to think about this is to work in the framework of breaking forecasts into stock specific and factor (or “portfolio”) forecasts. Given this hopefully intuitive separation then we need to ask the question “Where is the information within the forecast”?

- So in some cases we need to neutralize the forecast to the factor model we are using. This also has the advantage of making the portfolio construction process more stable. We consider the alpha preferences views in this way – our analysts are making stock specific forecasts, not factor forecasts.

- Our forecast from the growth surprise index is obviously a factor forecast. Given the pattern of returns from our skew factor we will consider this to be a portfolio forecast.
Neutralisation - why it works! (but some notation first)

- Assume that stock returns can be described by the following Linear Factor Model

\[r_{t+1} = \alpha + Bf_{t+1} + \varepsilon_{t+1} \]

where

\[f_{t+1} \sim N(0, F) \]

\[\varepsilon_{t+1} \sim N(0, D = \text{diag}(\sigma_1^2, \sigma_2^2, \cdots, \sigma_n^2)) \]

- implying that returns are distributed

\[\text{Cov}(r_{t+1}) = V = BFB' + D \]
A Quant Manager decomposes his signal

- We first decompose our signal, \(s \propto \mu \) into factor and stock specific exposures
 - Regress the signal onto the sensitivities (n.b. A Generalised Least Squares) to estimate \(g \)

\[
\mu = \mathbf{B}g + \hat{\alpha}
\]

where

\[
\begin{align*}
\hat{\alpha} & \sim N(0, \mathbf{D}) \\
g & = E_t(f_{t+1})
\end{align*}
\]

- The quant stock picker uses \(\alpha \) as his neutralised signal – the signal after removing any factor exposures.
- These stock specific alphas, \(\alpha \), are orthogonal to the factor sensitivities

\[
\hat{\alpha}^T \mathbf{D}^{-1} \mathbf{B} = 0
\]
Mean- variance optimisation for the stock picker

- The mean-variance problem is find portfolio w to maximise
 \[w^T \mu - \lambda w^T V w \]

- The unconstrained optimal portfolio is
 \[w = \lambda V^{-1} \mu \]

- If the quant manager only uses α as his alphas
 \[w = \lambda V^{-1} \hat{\alpha} = \lambda \left(B F B^T + D \right)^{-1} \hat{\alpha} = \lambda D^{-1} \hat{\alpha} \]
 as
 \[\hat{\alpha}^T D^{-1} B = 0 \]

A portfolio stock weight is its alpha over variance
Robust and Stable
Returning to Alpha Preferences

- The chart shows a back test of the performance of our Alpha Preferences portfolio (here built as a market neutral portfolio with equal investments in the long and short side).

Source: UBS Quants. For illustrative purposes only
Neutralising Alpha Preferences

- We take the Alpha Preferences portfolio and calculate the implied alphas from this

\[\mu = \frac{1}{\lambda} Vw \]

- We then use our neutralisation equation

\[\mu = Bg + \tilde{\alpha} \]

- And finally use the stock specific alphas from this equation to create our neutralised portfolio

\[w^* = \lambda D^{-1} \tilde{\alpha} \]
European Alpha Preferences historically

- This shows the implied forecast on the market factor (so the first element of f_g).

- The portfolio is not market neutral! And note that we are negative to the market in March 2009.

Source: UBS Quants. For illustrative purposes only
Alpha Preferences historically

- This chart shows the returns to the portfolio with the factor positions removed.
- We see good stock specific performance over most of the period.

... but good stock picking

Source: UBS Quants. For illustrative purposes only
SECTION 3

How to combine forecasts
The starting point

- We start from our three factor quant portfolio – value plus momentum plus quality.
- Our data starts in 2008 as that is when our history of alpha preferences starts.

Source: UBS
Mixed-Estimation or Black and Litterman Solution

- The Black and Litterman (1992) global asset allocation model was the seminal paper on the combination of investors’ views with equilibrium expected returns.
- The model can be set in a Theil (1971) framework where based on public information, investors have a prior view on expected returns. We shall call this the consensus view.
- Portfolio managers have more information. This information is represented as forecasts of expected return to a given set of portfolios.
- The consensus views are updated with these forecasts to derive a posterior estimate of the expected returns - amounts to imputing a set of expected returns that are a weighted average of the consensus and forecast views.
Combining forecasts with the consensus views

- Denote the consensus view of expected returns given public information as
 \[E_t(r_{t+1}|I_t) = \mu_0 \]

- The strategist has access to forecasts based on additional information which allows him to improve on the consensus view. We represent these forecasts as the return to \(p \) portfolios where
 \[g_{t+1} = PE_t\left(r_{t+1} - \mu_0\big|I_t^+\right) + \eta_t \quad \text{where} \quad \eta_t \sim N(0, \Omega) \]
 The term \(\eta_t \) represents independent forecast errors and where the extra information \(I_t^+ \) can explain a proportion \(\tau^2V \) of the return.

- Combing the two views gives us the Black and Litterman formula
 \[\mu = E_t\left(r_{t+1}|I_t, g_{t+1}\right) = \mu_0 + VP^T\left(PVP^T + \tau^{-2}\Omega\right)^{-1} g_{t+1} \]
Understanding the solution

- The optimal portfolio is the consensus portfolio (the market?) plus a tilt based on our forecasts

\[w = \lambda V^{-1} \mu = w_0 + \lambda P^T (P V P^T + \tau^{-2} \Omega)^{-1} g_{t+1} = w_0 + P^T \tilde{g}_{t+1} \]

The optimal portfolio tilt is just a weighted sum of the forecast portfolios \(P! \)

- The weights are just the adjusted returns to these forecast portfolios.

\[\tilde{g}_{t+1} = \lambda (P V P' + \tau^{-2} \Omega)^{-1} g_{t+1} \]

The adjustment is for the relative volatility in and covariance between the forecast portfolios

- And it will be stable as long as the forecast portfolios \(P \) are stable!
Extending this to other forecast types

- The equation can be extended to encompass stock specific, pure factor and portfolio forecasts:

\[
E_t \begin{pmatrix} r_{t+1} & g_{g_{f,t+1}} \\ g_{g_{f,t+1}} & g_{g_{g,t+1}} \end{pmatrix} = [B I] E_t \begin{pmatrix} f_{t+1} \\ \varepsilon_{t+1} \end{pmatrix} = \\
\begin{bmatrix}
\tau^2 V P' & \tau^2 B F P_f' & \tau^2 D P_{\varepsilon}' \\
\tau^2 F F B P_f' & \tau^2 F P_f' + \Omega_f & \tau^2 P D P_{\varepsilon}' \\
\tau^2 P_{\varepsilon} D P' & 0 & \tau^2 P_{\varepsilon} F P_{\varepsilon}' + \Omega_{\varepsilon}
\end{bmatrix}^{-1} \begin{pmatrix} g_{t+1} \\ g_{g_{f,t+1}} \\ g_{g_{g,t+1}} \end{pmatrix}
\]
Putting it all together

- So in our case we have
 - Three factor forecasts from our underlying quant portfolio – value, momentum and quality. These are factor forecasts as we include these factors in our risk model
 - A factor forecast on the first factor in the risk model, the market factor
 - A portfolio forecast from the skew (long low skew, short high skew)
 - A set of stock specific forecasts from alpha preferences.
How to audit forecasts
Forecast auditing

- This process takes forecasts and calculates the stock level alphas. However, we believe that the process can be improved by attempting to understand how the forecasts are being used, and whether the forecasts are consistent. We call this process forecast auditing.

- Mixed estimation maps your forecasts onto the factors in the risk model and stock specific risk. We calculate the implied factor returns using the equation

\[
E(f_{t+1} \mid I_t, g_{t+1}) = \tau^2 F B' P' \left(\tau^2 P V P' + \Omega \right)^{-1} g_{t+1}
\]

- Why is this useful? The following example illustrates this.
Implied factor forecasts – an example

- Building a value and momentum fund: We have put equal forecasts of return on our value and momentum funds. The implied factor forecasts are shown below:

<table>
<thead>
<tr>
<th>Forecast correlations</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Composite Value (<v>)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2 High Medium Term Price Momentum (<M>)</td>
<td>0.463</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Source: UBS Quants. For illustrative purposes only

<table>
<thead>
<tr>
<th>Factor forecasts and implied changes</th>
<th>Total</th>
<th>drop 1</th>
<th>drop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBS World Index</td>
<td>-1.969</td>
<td>-0.386</td>
<td>2.045</td>
</tr>
<tr>
<td>UBSA Oil & Gas</td>
<td>6.815</td>
<td>-2.353</td>
<td>-2.963</td>
</tr>
<tr>
<td>UBSA Basic Materials</td>
<td>2.381</td>
<td>-0.616</td>
<td>-1.020</td>
</tr>
<tr>
<td>UBSA Industrials</td>
<td>-0.763</td>
<td>0.200</td>
<td>0.300</td>
</tr>
<tr>
<td>UBSA Consumer Goods</td>
<td>0.324</td>
<td>0.428</td>
<td>-0.747</td>
</tr>
<tr>
<td>UBSA Health Care</td>
<td>-0.048</td>
<td>0.445</td>
<td>-0.465</td>
</tr>
<tr>
<td>UBSA Consumer Services</td>
<td>-1.494</td>
<td>0.637</td>
<td>0.484</td>
</tr>
<tr>
<td>UBSA Telecommunications</td>
<td>-0.943</td>
<td>-0.273</td>
<td>1.079</td>
</tr>
<tr>
<td>UBSA Utilities</td>
<td>1.956</td>
<td>-0.420</td>
<td>-1.120</td>
</tr>
<tr>
<td>UBSA Financials</td>
<td>-1.155</td>
<td>0.060</td>
<td>0.099</td>
</tr>
<tr>
<td>UBSA Technology</td>
<td>-3.896</td>
<td>1.040</td>
<td>1.950</td>
</tr>
<tr>
<td>Canada</td>
<td>-0.147</td>
<td>0.110</td>
<td>-0.006</td>
</tr>
<tr>
<td>UK</td>
<td>0.503</td>
<td>-0.054</td>
<td>-0.348</td>
</tr>
<tr>
<td>Japan</td>
<td>-1.197</td>
<td>0.342</td>
<td>0.501</td>
</tr>
<tr>
<td>United States</td>
<td>-0.038</td>
<td>0.005</td>
<td>0.024</td>
</tr>
<tr>
<td>ENU</td>
<td>0.838</td>
<td>-0.249</td>
<td>-0.399</td>
</tr>
<tr>
<td>Europe Ex EMU/UK</td>
<td>0.474</td>
<td>-0.238</td>
<td>-0.116</td>
</tr>
<tr>
<td>Asia-Pacific Ex Japan</td>
<td>-0.085</td>
<td>-0.004</td>
<td>0.074</td>
</tr>
<tr>
<td>Latin America</td>
<td>-0.102</td>
<td>-0.002</td>
<td>0.098</td>
</tr>
<tr>
<td>Composite Growth (<G>)</td>
<td>-0.468</td>
<td>0.142</td>
<td>0.218</td>
</tr>
<tr>
<td>Composite Value (<v>)</td>
<td>0.461</td>
<td>-0.251</td>
<td>-0.090</td>
</tr>
<tr>
<td>High Medium Term Price Momentum (<M>)</td>
<td>-0.710</td>
<td>0.165</td>
<td>0.388</td>
</tr>
<tr>
<td>High Dividend Cover (<Q>)</td>
<td>-0.955</td>
<td>0.039</td>
<td>0.244</td>
</tr>
<tr>
<td>Mid Cap (<S>)</td>
<td>-0.214</td>
<td>0.083</td>
<td>0.078</td>
</tr>
<tr>
<td>High Free Cash-flow Yield (<v>)</td>
<td>0.224</td>
<td>-0.058</td>
<td>-0.116</td>
</tr>
</tbody>
</table>

Source: UBS
We can see we have a large negative forecast on the first, benchmark, factor. The reason for this is that high (low) momentum stocks currently have a low (high) market beta. Given that the market factor is the primary driver of return then this is where the mathematics maps the return. But this isn’t what we mean.

To fix this we add an artificial forecast of zero on the market portfolio (or the market factor). This leads to the implied returns seen here.
Checking the consistency of the Forecasts

• Forecasts often come from very different sources. Therefore may be based on different assumptions.

• Need to check the forecasts for mutual consistency. For example:
 – Are the analyst price recommendations consistent with the
 a) Sector calls b) Value/Growth Calls ?
 – Are the sector calls consistent with the
 a) regional calls b) value/growth Calls ?

• Developed the Relative Risk Statistic. Given forecasts, \(g_1 \) and \(g_2 \), the relative risk measures the probability of observing \(g_2 \) divided by the probability of observing \(g_2 \) given the forecasts \(g_1 \).
More formally

- We have assumed that the joint distribution of forecasts is

\[
\begin{bmatrix}
g_{1,t+1} \\
g_{2,t+1}
\end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau^2 P_1 V P'_1 + \Omega_1 & \tau^2 P_1 V P'_2 \\ \tau^2 P_2 V P'_1 & \tau^2 P_2 V P'_2 + \Omega_2 \end{bmatrix} \right) := \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{12}' & \Lambda_{22} \end{bmatrix}
\]

which implies

\[
g_{1,t+1} \sim N\left(0, \Lambda_{11}\right)
\]

\[
g_{1,t+1} \mid g_{2,t+1} \sim N\left(\Lambda_{12} \Lambda_{22}^{-1} g_{2,t+1}, \Lambda_{11} - \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{12}'\right)
\]

- The relative risk statistic is defined

\[
RR(g_1 \mid g_2) = \frac{p(g_1)}{p(g_1 \mid g_2)} = \frac{p(g_2)}{p(g_2 \mid g_1)} = RR(g_2 \mid g_1)
\]

and its natural log is distributed as weighted sum of central Chi.
An example: Audit of the German Forecast

Relative Risk = \frac{p(g_2)}{p(g_2|g_1)} = 1.66 > 1 \quad \text{p-value}=0.087

Source: UBS
APPENDIX B

Additional details on Black & Litterman
Equivalence to Black Litterman Formula

- From the matrix inversion theorem e.g. Lütkepohl (1996, p.29)
 \[
 \left(\tau^2 PVP' + \Omega \right)^{-1} = \Omega^{-1} - \Omega^{-1} P \left(\tau^2 V^{-1} + P'\Omega^{-1} P \right)^{-1}
 \]

- Hence
 \[
 E_t \left(r_{t+1} \mid I_t, g_{t+1} \right) = \mu_0 + \tau^2 VP' \left[\Omega^{-1} - \Omega^{-1} P \left(\tau^2 V^{-1} + P'\Omega^{-1} P \right)^{-1} \right] g_{t+1}
 \]
 \[
 = \mu_0 + \left(\tau^2 V^{-1} + P'\Omega^{-1} P \right)^{-1} P'\Omega^{-1} g_{t+1}
 \]
 \[
 = \left(\tau^2 V^{-1} + P'\Omega^{-1} P \right)^{-1} \left(\tau^2 V^{-1} \mu_0 + P'\Omega^{-1} \left(g_{t+1} + P \mu_0 \right) \right)
 \]

- Therefore the final vector of expected returns is a weighted average of the forecasts and consensus views. This is often called a shrinkage or Bayes-Stein estimator.

- For full details see Sefton, Bulsing and Scowcroft (2004).
Conditioning the Forecasts reduces turnover

- The mean-variance optimisation problem is find portfolio w to maximise
 \[w'\mu - \lambda w'\Sigma w \]
 where the risk matrix Σ (in the optimiser) is different from the risk matrix V.

- The unconstrained optimal portfolio is
 \[w = \lambda \Sigma^{-1} \mu \]
 and therefore using the conditioned returns from Black-Litterman,
 \[w = \lambda \Sigma^{-1} \mu_0 + \lambda \left[\Sigma^{-1} V \right] P' \left(PVP' + \tau^{-2} \Omega \right)^{-1} g_{t+1} \]
The term \([\Sigma^{1}V]\) can cause large turnover. To illustrate let

\[
\Sigma = V - b\delta b'
\]

Then a little algebra show that

\[
b'[\Sigma^{-1}V] = \left(\frac{\delta^{-1}}{\delta^{-1} - b'V^{-1}b} \right) b'
\]

but if the risk matrix \(V\) has a small eigenvalue the term \(b'V^{-1}b\) can be very large. In fact the matrix product can tend to infinity for very small perturbations! For later, note that this condition is most likely to be satisfied if \(b\) lies in the nullspace of \(B\).

Therefore if the perturbation changes from one period to another, the portfolio can change by an almost arbitrary amount.
And this turnover promises elusive profits

- The promised information ratio from this portfolio
 \[IR^2 = E\left(\mu'\Sigma^{-1}\mu\right) = E\left(\text{Trace}\left(\Sigma^{-1}\mu\mu'\right)\right) \]

 \[= \text{Trace}\left(\Sigma^{-1}E\left(\mu\mu'\right)\right) \]

 \[= \text{Trace}\left(\tau^2\left[\Sigma^{-1}V\right]-\tau^2\left[\Sigma^{-1}V\right]P'\left(\tau^2PVP' + \Omega\right)^{-1}\tau^2PV\right) \]

- So the same argument applies. The optimiser promises phenomenal performance! (which unfortunately will not be delivered)

- **Solution**: Use the same risk matrix to condition the forecasts as is used in the optimiser, \(\Sigma=V \), so that \(\Sigma^{-1}V=I \)
Analyst Certification

Each research analyst primarily responsible for the content of this research report, in whole or in part, certifies that with respect to each security or issuer that the analyst covered in this report: (1) all of the views expressed accurately reflect his or her personal views about those securities or issuers and were prepared in an independent manner, including with respect to UBS, and (2) no part of his or her compensation was, is, or will be, directly or indirectly, related to the specific recommendations or views expressed by that research analyst in the research report.
Required Disclosures

This report has been prepared by UBS Limited, an affiliate of UBS AG. UBS AG, its subsidiaries, branches and affiliates are referred to herein as UBS.

For information on the ways in which UBS manages conflicts and maintains independence of its research product; historical performance information; and certain additional disclosures concerning UBS research recommendations, please visit www.ubs.com/disclosures. The figures contained in performance charts refer to the past; past performance is not a reliable indicator of future results. Additional information will be made available upon request. UBS Securities Co. Limited is licensed to conduct securities investment consultancy businesses by the China Securities Regulatory Commission.

UBS Investment Research: Global Equity Rating Allocations

<table>
<thead>
<tr>
<th>UBS 12-Month Rating</th>
<th>Rating Category</th>
<th>Coverage<sup>1</sup></th>
<th>IB Services<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>Buy</td>
<td>51%</td>
<td>34%</td>
</tr>
<tr>
<td>Neutral</td>
<td>Hold/Neutral</td>
<td>40%</td>
<td>35%</td>
</tr>
<tr>
<td>Sell</td>
<td>Sell</td>
<td>9%</td>
<td>15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UBS Short-Term Rating</th>
<th>Rating Category</th>
<th>Coverage<sup>3</sup></th>
<th>IB Services<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>Buy</td>
<td>less than 1%</td>
<td>25%</td>
</tr>
<tr>
<td>Sell</td>
<td>Sell</td>
<td>less than 1%</td>
<td>17%</td>
</tr>
</tbody>
</table>

1:Percentage of companies under coverage globally within the 12-month rating category.
2:Percentage of companies within the 12-month rating category for which investment banking (IB) services were provided within the past 12 months.
3:Percentage of companies under coverage globally within the Short-Term rating category.
4:Percentage of companies within the Short-Term rating category for which investment banking (IB) services were provided within the past 12 months.

Source: UBS. Rating allocations are as of 31 March 2012.

UBS Investment Research: Global Equity Rating Definitions

<table>
<thead>
<tr>
<th>UBS 12-Month Rating</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>FSR is > 6% above the MRA.</td>
</tr>
<tr>
<td>Neutral</td>
<td>FSR is between -6% and 6% of the MRA.</td>
</tr>
<tr>
<td>Sell</td>
<td>FSR is > 6% below the MRA.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UBS Short-Term Rating</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>Buy: Stock price expected to rise within three months from the time the rating was assigned because of a specific catalyst or event.</td>
</tr>
<tr>
<td>Sell</td>
<td>Sell: Stock price expected to fall within three months from the time the rating was assigned because of a specific catalyst or event.</td>
</tr>
</tbody>
</table>
Required Disclosures (Continued)

KEY DEFINITIONS

Forecast Stock Return (FSR) is defined as expected percentage price appreciation plus gross dividend yield over the next 12 months.

Market Return Assumption (MRA) is defined as the one-year local market interest rate plus 5% (a proxy for, and not a forecast of, the equity risk premium).

Under Review (UR) Stocks may be flagged as UR by the analyst, indicating that the stock's price target and/or rating are subject to possible change in the near term, usually in response to an event that may affect the investment case or valuation.

Short-Term Ratings reflect the expected near-term (up to three months) performance of the stock and do not reflect any change in the fundamental view or investment case.

Equity Price Targets have an investment horizon of 12 months.

EXCEPTIONS AND SPECIAL CASES

UK and European Investment Fund ratings and definitions are:

- **Buy**: Positive on factors such as structure, management, performance record, discount;
- **Neutral**: Neutral on factors such as structure, management, performance record, discount;
- **Sell**: Negative on factors such as structure, management, performance record, discount.

Core Banding Exceptions (CBE): Exceptions to the standard +/-6% bands may be granted by the Investment Review Committee (IRC). Factors considered by the IRC include the stock's volatility and the credit spread of the respective company's debt. As a result, stocks deemed to be very high or low risk may be subject to higher or lower bands as they relate to the rating. When such exceptions apply, they will be identified in the Company Disclosures table in the relevant research piece.

Research analysts contributing to this report who are employed by any non-US affiliate of UBS Securities LLC are not registered/qualified as research analysts with the NASD and NYSE and therefore are not subject to the restrictions contained in the NASD and NYSE rules on communications with a subject company, public appearances, and trading securities held by a research analyst account. The name of each affiliate and analyst employed by that affiliate contributing to this report, if any, follows.

UBS Limited: David Jessop

Unless otherwise indicated, please refer to the Valuation and Risk sections within the body of this report.
This document has been prepared by UBS Limited, an affiliate of UBS AG. UBS AG, its subsidiaries, branches and affiliates are referred to herein as UBS.

This document is for distribution only as may be permitted by law. It is not directed to, or intended for distribution to or use by, any person or entity who is a citizen or resident of or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or would subject UBS to any registration or licensing requirement within such jurisdiction. It is published solely for information purposes; it is not an advertisement nor is it a solicitation or an offer to buy or sell any financial instruments or to participate in any particular trading strategy. No representation or warranty, either express or implied, is provided in relation to the accuracy, completeness or reliability of the information contained in this document ("the Information"). except with respect to Information concerning UBS. The Information is not intended to be a complete statement or summary of the securities, markets or developments referred to in the document. UBS does not undertake to update or keep current the Information. Any opinions expressed in this document may change without notice and may differ or be contrary to opinions expressed by other business areas or groups of UBS.

Nothing in this document constitutes a representation that any investment strategy or recommendation is suitable or appropriate to an investor's individual circumstances or otherwise constitutes a personal recommendation. Investments involve risks, and investors should exercise prudence and their own judgement in making their investment decisions. The financial instruments described in the document may not be eligible for sale in all jurisdictions or to certain categories of investors. Options, derivative products and futures are not suitable for all investors, and trading in these instruments is considered risky. Mortgage and asset-backed securities may involve a high degree of risk and may be highly volatile in response to fluctuations in interest rates or other market conditions. Foreign currency rates of exchange may adversely affect the value, price or income of any security or related instrument referred to in the document. For investment advice, trade execution or other enquiries, clients should contact their local sales representative.

The value of any investment or income may go down as well as up, and investors may not get back the full amount invested. Past performance is not necessarily a guide to future performance. Neither UBS nor any of its directors, employees or agents accepts any liability for any loss (including investment loss) or damage arising out of the use of all or any of the Information.

Any prices stated in this document are for information purposes only and do not represent valuations for individual securities or other financial instruments. There is no representation that any transaction can or could have been effected at those prices, and any prices do not necessarily reflect UBS's internal books and records or theoretical model-based valuations and may be based on certain assumptions. Different assumptions could result in materially different results. The analyst(s) responsible for the preparation of this document may interact with trading desk personnel, sales personnel and other parties for the purpose of gathering, applying and interpreting market information. UBS relies on information barriers to control the flow of information contained in one or more areas within UBS into other areas, units, groups or affiliates of UBS. The compensation of the analyst who prepared this document is determined exclusively by research management and senior management (not including investment banking). Analyst compensation is not based on investment banking revenues; however, compensation may relate to the revenues of UBS Investment Bank as a whole, or which investment banking, sales and trading are a part.

Research will initiate, update and cease coverage solely at the discretion of UBS Investment Bank Research Management. The analysis contained in this document is based on numerous assumptions. Different assumptions could result in materially different results. The analyst(s) responsible for the preparation of this document may interact with trading desk personnel, sales personnel and other parties for the purpose of gathering, applying and interpreting market information. UBS relies on information barriers to control the flow of information contained in one or more areas within UBS into other areas, units, groups or affiliates of UBS. The compensation of the analyst who prepared this document is determined exclusively by research management and senior management (not including investment banking). Analyst compensation is not based on investment banking revenues; however, compensation may relate to the revenues of UBS Investment Bank as a whole, or which investment banking, sales and trading are a part.

For financial instruments admitted to trading on an EU regulated market: UBS AG, its affiliates or subsidiaries (excluding UBS Securities LLC) acts as a market maker or liquidity provider (in accordance with the interpretation of these terms in the UK) in the financial instruments of the issuer save that where the activity of liquidity provider is carried out in accordance with the definition given to it by the laws and regulations of any other EU jurisdictions, such information is separately disclosed in this document. For financial instruments admitted to trading on a non-EU regulated market: UBS may act as a market maker save that where this activity is carried out in the US in accordance with the definition given to it by the relevant laws and regulations, such activity will be specifically disclosed in this document. UBS may have issued a warrant the value of which is based on one or more of the financial instruments referred to in the document; UBS and its affiliates and employees may have long or short positions, trade as principal and buy and sell in instruments or derivatives identified herein; such transactions or positions may be inconsistent with the opinions expressed in this document.
Contact information

UBS Limited
1 Finsbury Avenue
London

Tel: +44-207-567 8000

www.ubs.com